Combining Knowledge Compilation and Search for Conformant Probabilistic Planning
نویسنده
چکیده
We present a new algorithm for conformant probabilistic planning, which for a given horizon produces a plan that maximizes the probability of success under quantified uncertainty about the initial state and action effects, and absence of sensory information. Recent work has studied systematic search in the space of all candidate plans as a feasible approach to conformant probabilistic planning, but the algorithms proposed require caching of intermediate computations in such a way that memory is often exhausted quickly except for small planning horizons. On the other hand, planning problems in typical formulations generally have treewidths that do not grow with the horizon, as connections between variables are local to the neighborhood of each time step. These existing planners, however, are unable to directly benefit from the bounded treewidth owing to a constraint on the variable ordering which is necessary for correct computation of the optimal plan. We show that lifting such constraint allows one to obtain a compact compilation of the planning problem, from which an upper bound can be efficiently computed on the value of any partial plan generated during search. Coupled with several optimizations, this results in a depth-first branchand-bound algorithm which on the tested domains runs an order of magnitude faster than its predecessors, and at the same time is able to solve problems for significantly larger horizons thanks to its minimal memory requirements.
منابع مشابه
Compiling Conformant Probabilistic Planning Problems into Classical Planning
In CPP, we are given a set of actions (assumed deterministic in this paper), a distribution over initial states, a goal condition, and a real value 0 < θ ≤ 1. We seek a plan π such that following its execution, the goal probability is at least θ. Motivated by the success of the translation-based approach for conformant planning, introduced by Palacios and Geffner, we suggest a new compilation s...
متن کاملUsing Classical Planners to Solve Conformant Probabilistic Planning Problems
Motivated by the success of the translation-based approach for conformant planning, introduced by Palacios and Geffner, we present two variants of a new compilation scheme from conformant probabilistic planning problems (CPP) to variants of classical planning. In CPP, we are given a set of actions – which we assume to be deterministic in this paper, a distribution over initial states, a goal co...
متن کاملApplying Search Based Probabilistic Inference Algorithms to Probabilistic Conformant Planning: Preliminary Results
Probabilistic conformant planning problems can be solved by probabilistic inference algorithms after translating their PPDDL specifications into graphical models. We present two translation schemes that convert probabilistic conformant planning problems as graphical models. The first encoding is based on the probabilistic extension of the serial encoding of PDDL in SatPlan, and the second encod...
متن کاملConditioning in First-Order Knowledge Compilation and Lifted Probabilistic Inference
Knowledge compilation is a powerful technique for compactly representing and efficiently reasoning about logical knowledge bases. It has been successfully applied to numerous problems in artificial intelligence, such as probabilistic inference and conformant planning. Conditioning, which updates a knowledge base with observed truth values for some propositions, is one of the fundamental operati...
متن کاملA Relevance-Based Compilation Method for Conformant Probabilistic Planning
Conformant probabilistic planning (CPP) differs from conformant planning (CP) by two key elements: the initial belief state is probabilistic, and the conformant plan must achieve the goal with probability ≥ θ, for some 0 < θ ≤ 1. In earlier work we observed that one can reduce CPP to CP by finding a set of initial states whose probability≥ θ, for which a conformant plan exists. In previous solv...
متن کامل